Mischa Wanek-Libman, editor

Mischa Wanek-Libman, editor

Mischa is originally from Grand Island, Neb., and earned a Bachelor of Arts degree in Journalism and Mass Communication from Drake University in Des Moines, Iowa, with a major in magazine journalism and minor in business management. She began her career in journalism and railroading at Railway Track & Structures in 2001 when she joined as assistant editor, before being named managing editor in 2008 and editor in 2010. 

Mischa has worked for 515 Magazine and Drake Magazine, both in Des Moines, and 08004homes.com in London, U.K.

Website URL:

A new 30-year, $30-billion plan to enhance Toronto, ON, Canada, transit was unveiled yesterday.

The Tier 1 Draft Environmental Impact Statement evaluating high-speed rail service improvements along the 280-mile Chicago to St. Louis Corridor was released on Tuesday, June 26. A key question with the improvements was what route to funnel freight and passenger traffic as it traversed through Springfield, Ill. The Illinois Department of Transportation recommended rail traffic be moved to the existing Norfolk Southern corridor running along 10th Street.

Wednesday, 20 June 2012 11:58

TIGER IV funding light on rail

No official word from the U.S. Department of Transportation has been released regarding awards of the fourth round of the Transportation Investment Generating Economic Recovery, but news from various congressional offices is revealing what projects will benefit from the latest round of grants. The initial tally indicates rail related projects did not fare as well as they had in past TIGER funding cycles, but several key projects will see federal money.

Wednesday, 13 June 2012 08:39

Signs, they are a-changin'

Chicago, where I live and where RT&S is put together each month, represents various things to various people. To my grandfather, who worked with the American Angus Association, memories of the old Union Stockyards come to mind.

Automated crosstie evaluation systems work toward removing  subjectivity and improving accuracy of crosstie inspections.
Friday, 23 March 2012 08:32

NRC hits new highs in San Deigo

The 2012 National Railroad Construction and Maintenance Association Annual Conference in California is another record-breaking success.

Friday, 23 March 2012 09:42

Trio of trusses

Planning, coordination and structural engineering magic come together
on a project to replace three century-old bridges in Massachusetts.

Wednesday, 11 April 2012 11:51

Small route with big plans

A true shortline, GRD, develops a plan for growth to secure its future.

All photos courtesy Gardenale Railroad, Inc.

Shortline can be a misnomer for a lot of railroads that run routes that number in the hundreds of miles. However, the term “shortline” could not be a better fit for Gardendale Railroad, Inc., a wholly-owned subsidiary of Ironhorse Resources, Inc., which measures its length in feet rather than miles. But a short distance doesn’t mean maintenance and engineering challenges are diminished. The railroad began its customer, railcar, employment and locomotive counts at zero and in the past year and a half has grown to nine customers, more than 25,000 loaded railcars annually and grown from 1,600 feet of track to 63,915 feet of railroad and industry track. The site now employs more than 120 full-time positions between railroad and industry jobs.

GRD dates its history to 1990 when Crystal City Railroad, Inc., a wholly-owned subsidiary of Ironhorse Resources, Inc., purchased a 50-mile stretch of rail line from the Missouri Pacific Railroad. In 1995, the major 1,000-railcar/year customer discontinued shipping and 49 miles of the 50-mile branch line were abandoned. Ironhorse Resources discontinued operations at this location at the same time, but maintained ownership of approximately 1,600 feet of the connecting interchange track and 6,200 feet of a 100-foot wide railroad right-of-way.

In 2010, after being dormant for 15 years, the 6,200 feet right-of-way was reopened for business and the line was re-branded as GRD when market interest in the Eagle Ford Shale drilling play gained momentum. Once the need for the line was reestablished, the next task was to return the infrastructure back to working condition, which meant dealing with the effects of time, such as ties that more closely resembled felled trees, as well as the effects of man, such as removing a deer blind that had been erected too close to the railroad.

“As a result of abandoning 49 of the 50-mile branch line, we only had 1,600 feet of 90-lb. rail remaining,” said Matt Cundiff, vice president Southern Region at Ironhorse Resources, Inc. “In 2010, this 1,600 feet was barely in excepted condition. To bring on our first customer (through agency agreement with UP), we installed ties and spent about $30,000 to initially bring the line ‘back to life’.”

 The entirety of GRD’s infrastructure is 100 percent new build. According to Cundiff, based on volume demand, GRD scheduled a complete replacement and upgrade of the original 1,600 feet, which is now all newly constructed 112-lb. rail, 7x9 tie track. Cundiff points to two contractors that helped the project including Central State Resources, Inc., which did all the rail engineering and the majority of the dirt work (sub grade and sub base) at the facility and TracWorks Inc., which built the majority of the track throughout the rail park.

“The biggest issue with our original ‘interchange’ track was that there really wasn’t even a need for us to send a locomotive. We were a ‘railroad,’ but the track resembled an industry siding that needed direct Class 1 service,” said Cundiff. “As a result, [we asked ourselves] ‘How do we re-establish service and still make a return on our asset?’ Through many brainstorming sessions, it was decided that we establish an ‘Agency Agreement’ with the Union Pacific until we build adequate trackage and start using our own power to interchange cars and switch customers.  This Agreement allowed UP to interchange cars to GRD directly to the 1,600 feet of track. Then, UP acted as GRD’s agent for creating the outbound train when the cars were released by our customer.”

 While developing the agreement with UP, GRD also began working on a land acquisition strategy and designing a phased growth interchange yard. According to Cundiff, in September 2010, GRD obtained an 80-year lease on an adjacent 100-plus acre ranch and in January 2011, GRD obtained a Phase 2 site of more than 150 acres.

“This project would not have happened without the support of Union Pacific Railroad making timely marketing decisions to promote business, Union Pacific’s operation department willing to work as an Agent for GRD on a temporary timeframe and UP scheduling continued mainline improvements to support this extreme growth,” said Cundiff.

In order to establish long-term interchange service with UP, GRD needed to finalize an acceptable interchange design. Due to a limited 6,200-foot ROW and a need for a switching lead, Cundiff says a preferred 8,000-foot interchange track was not attainable.
“After many design evolutions and discussions, GRD and UP finalized the MOU in December 2010 that allowed for a ‘double-over’ of inbound and outbound train movements. The resulting design for the phased interchange yard allowed for growth to support multiple inbound unit trains, multiple outbound trains and simultaneously handle manifest trains,” said Cundiff.

However, Cundiff notes that the interchange yard design and acceptance process also presented some significant challenges.

“Our corporate strategy is NOT to invest in any solution that does not allow unit train handling solutions.  (If a Class 1 railroad prefers to handle a 100-plus car train, that is the solution we need to invest in.) With only a 6,200-foot long, 100-foot wide corridor, how do you create a unit train handling solution with a switching lead that allows growth and flexibility to service new customers?

“We simultaneously worked in-house on conceptual designs and further employed Central State Resources, Inc., to provide the final rail engineering for the site.  After a multitude of designs, we finalized our Memorandum of Understanding with Union Pacific,” said Cundiff. “The result provided an expandable solution that provides for an open-runaround track and multiple 3,300-foot long tracks. This allows an inbound movement to ‘double-over’ and allows the Union Pacific locomotives to run-around the placed inbound interchanges.

“Our design evolution has shown that with our physical footprint constraints, a yard and ladder track design concept allowed for the most efficient use of our available acreage. We began our yard design process around September of 2010 and had our MOU and final design acceptance with UP by December 2010,” said Cundiff.

GRD is also planning for the future and a Phase 3 development with the acquisition of an option to purchase an additional 220 acres. The original Phase 1 and Phase 2 developments are almost sold out to various customers needing to move everything from frac sand to barite and bentonite, hydrochloric acid, line pipe, crude and natural gas liquids.

From the initial 1,600 feet of interchange track and 6,200 feet of ROW, GRD has constructed more than 63,000 feet of new track and an additional 50,000 feet of track is under construction and expected to be active before July 2012.

 With all new infrastructure, maintenance is important to GRD, but growth is key to its survival.

“The track maintenance will be minimal for the first few years. We will conduct weekly track inspections and anticipate minor maintenance during this time.  Our plans are to maintain the track to Class 3 standards,” said Cundiff. “Currently, we have developed and built infrastructure to handle our current nine customers. We anticipate handling more than 25,000 car loads per year.  If we expand into Phase 3 of this project (approximately 220 acres and potentially five additional customers), we would expect an additional capital improvement of $6 million to support that expansion.”

Wednesday, 11 January 2012 12:51

Stepping up rail-flaw detection

New products, methods and technologies are helping suppliers find defects before they can cause problems on a railroad.

Research and development departments continue to drive advancements in rail-flaw detection technologies and methods. Railroads want to find smaller and smaller defects but they also need a total assessment of rail health.

Herzog Services, Inc.

Herzog Services, Inc. (HSI), has seen continued growth over the 2011 calendar year with the addition of another Class 1 railroad to its customer base, allowing HSI to strengthen its presence in the North American market.

“A growing market share with new customers and new requirements is an exciting focus for our team,” said Troy Elbert, assistant vice president of Herzog Services, Inc.

 Jeff Wigh, director of Research and Development, has been working diligently to increase HSI’s technical staff and to partner with HSI customers to analyze and meet changing needs and wants in the rail testing industry.

The Research and Development team also has new products on the horizon that Elbert says will not only improve defect detection capabilities, but also provide a suite of products to increase the analytical options available. Data, such as rail profile and light geometry, can be added if a customer so desires and can be updated with each subsequent scheduled ultrasonic inspection. 

“This will allow us to collate ultrasonic inspection and other rail health data to trend and monitor problem areas more efficiently for our customers. This could present a cost savings to our customers by allowing them to focus on areas that need more frequent inspections or other maintenance measures to prevent premature rail failures,” said Elbert. “HSI will continue to provide customer service to the industry and refine our products to be the most reliable and efficient inspection system on the market. With upcoming new product capabilities and expansion of services, Herzog Services, Inc.’s goal is to give our customers value for their inspection dollar.”

Herzog Services, Inc., uses ultrasonic technology to find defects on lines for heavy haul and transit customers. HRSi's Series 6000 vehicle out on track.


Nordco Rail Services and Inspection Technologies launched two new rail-flaw detection vehicles in 2011. The company says these vehicles focus on providing exceptional reliability and defect detection.

“To accomplish this we have introduced some exciting new technology, our patent-pending On Board Run on Run system, a 48-channel fully digital hardware platform and an Automatic Wheel Probe alignment system utilizing rail profiling data,” said Patrick Graham, president of Nordco Rail Services and Inspection Technologies. “Our focus is to continue to improve the quality of the test while driving up the total miles we can test in a given day. The On Board Run on Run system allows the operator to see the previous test information; this will allow better decisions and affect both test speed and quality.”

Graham notes that adding rail profiling to a detector car allows the railroad to collect profiling data as frequent as every two weeks or specifically tailored to a customer’s needs.

“However, it also provides the detector car with the exact location of the web of the rail relative to the gauge corner. Using this, we have specific algorithms that adjust the wheel probe to insure it is always centered over the web of the rail. Once again, increasing quality and test speed,” said Graham.

Nordco also launched the “One Pass” manual inspection system in 2011. This allows for a fully recordable GPS tracked test of a rail in one pass. Nordco utilizes its XL9-11 wheel probe with 11 transducers including the side looker transducers for vertical split head detection.

According to Graham, customers are continuing to request increased quality and test speed, as well as looking for ways to reduce service failures. 

“One of the ways we responded to this need is our expanded 48-channel platform. This allows us to continually deploy new wheel probe technology with significant extra processing power. When we couple this with our latest XL9-11 wheel probe, we have extra physical room available on the test carriage and have extra process channels.

Because rail surface conditions can be a factor in providing a good quality test and training and maintaining quality personnel is always a challenge due to the nature of the business, Nordco says it has enhanced its training programs with in-house simulations and hands-on track time to further develop the skills of its chief operators.

“Nordco continues to offer the railroads varying solutions to rail-flaw detection. We provide full service turnkey testing services, as well as sell rail-flaw detection systems directly to the railroads. This allows the railroad to work with the model that best fits their business needs. In many cases, the solution we provide is in-between the two options, which continues to be the strength of Nordco; flexibility to provide the right solution to meet our customer’s needs,” said Graham.

Nordco vehicles now have an expanded 48-channel digital hardware platform, which the comapany says, allows it to continually deploy new wheel prob technology with extra processing power.

Precision RST

Precision Rail Stress Testing Inc (Precision RST) says it is addressing a long-standing industry need with the introduction of the Rail Stress Tester. According to Precision RST, the system is designed to quickly and accurately measure the neutral temperature of rail in a non-destructive manner.

“Our customers have told us that they are looking for a neutral temperature testing system that is accurate, fast, portable and non-destructive,” said Rick Middaugh, general manager at Precision RST. “There is increasing demand in a number of areas, from Class 1 to passenger to short lines: If there is a risk of a rail break or thermal misalignment, there is a need for neutral temperature testing.”

Middaugh notes that with rail stress measurement testing, the ongoing challenge lies in measuring the residual stress in the rail, as every rail has its own residual stress, however minimal. He says the system being introduced by Precision RST includes a calibration process that addresses the residual stress issue and allows for quick and accurate measurements every time.

“Neutral temperature testing has been an issue for years and Precision RST’s solution offers an efficient, accurate and cost-effective method to measure neutral temperature,” said Middaugh. “This system can be used for planning purposes. Railroads can focus valuable resources and maintenance efforts based on the results of the testing. The system can also be used for validation. For example, the tester could be applied as cwr is being laid and de-stressed to validate that it has been de-stressed to the targeted level prior to welding.”

Precision RST introduced the Rail Stress Tester, which is designed to measure rail neutral temperatures.


Sperry Rail Service says a number of technological developments it brought to the market contributed to the company’s detection of 90,000 rail-flaw defects in North America last year.

“Sperry’s approach is based on three principles – customization, innovation and service,” said Jamie O’Rourke, general manager of Sperry. “Railway clients share common issues but are inherently unique in their operations, with widely varying internal infrastructures, cultures, track conditions, usage, standards and regulatory oversight. The Sperry approach is to customize our proprietary capabilities and best-available technologies for programs specific to each railway.”

Sperry says recent innovations have come from a range of specific customer needs to broaden strategies implemented from around the world. For example, Sperry has deployed and released its Joint Bar Crack Detection (JBCD) system for inspecting joint bars for cracks or breaks. According to Sperry, the need was highlighted by Class 1 railroads’ interest in leveraging the frequency of Sperry’s rail-flaw detection vehicle to deliver a non-disruptive, value-add solution. John Kocur, who leads Sperry’s production engineering, said “the JBCD has been deployed on our 950 Series vehicle platform. The test vehicles are upgradable with the JBCD technology. This means no additional track access time is required to complete the joint bar inspection.”

On the other end of the spectrum, Sperry says it is advancing the implementation of its nonstop testing program in North America, moving from the pilot stage of 2010 to offering full service in 2012. This is being done collaboratively with rail-flaw detection leaders of the Class 1 railroads in a series of “stakeholder meetings” allowing each railroad engineering group to review the best fit of this technology for their specific infrastructure.

“The common denominator between our Joint Bar Crack Detection and our nonstop testing innovation is more actionable management information while lessening the footprint of inspection services,” said Alastair Veitch, managing director of global engineering at Sperry, “North American railroads will continue to require reduced risk while traffic and tonnage increase. That means efficiency and expertise in the testing service are paramount.”

Sperry says its technology road map requires new products and enhancements in platforms for delivery, detection technology and software management and points out 2011 was a year of significant development in all three. In platforms, Sperry says its delivery of the new Sperry 450 Series vehicle offers a lighter-weight and more nimble rail-flaw detection vehicle to deliver its core ultrasonic, X-Fire and vision technologies. The company points out that this platform is a fit for railroads seeing the benefit from a smaller vehicle than Sperry’s 950 Series vehicle. Further down the size scale, 2011 saw the implementation and rollout of the Dual Rail Inspection System and B-SCAN Flaw Detector single rail walking stick.

In the key area of detection technology, Sperry’s efforts continue to drive towards a full review of the rail condition. The biggest challenges to full detection, notes the company, come from the surface condition of the rail and the need to inspect the steel at a high-speed. An exciting focus for Sperry is the improvement of its proprietary induction technology bringing newly modeled coverage of the rail head for detecting defects with induction as part of Sperry’s next generation Electromagnetic Rail Inspection. This technology includes Sperry’s new surface crack detection and measurement system. Sperry has initiated trials with new base-defect focused ultrasonic technology that can be targeted for areas with a high concentration of base defects. Dr. Mark Havira, who has been leading Sperry’s ultrasonic detection research and development for 10 years, commented that “the full complement of testing platforms from slow to high speed now in service by Sperry gives us the opportunity to focus detection where it is most needed. This is especially true with base defects.”

Sperry says it has made advancements in the area of software and information technology, as well. The company offers its Sperry Data Management System (SDMS), which uses the Internet with secure access to the rail-flaw detection history for each of Sperry’s North American customers and has outfitted all of its rail-flaw detection equipment with wireless technology to ensure connectivity with the vehicles and monitoring performance on a real-time basis.

The proprietary DCS.NET on-vehicle software program has been completely implemented in 2011 and manages the inspection process while updating and drawing from SDMS. Sperry notes that a powerful new component recently developed enables the chief operator on the vehicle to concurrently view prior tests to assess changes in the rail condition. Sperry points to this tool as a key reason the DCS.NET was advanced across its fleet.

Dave Corby, Sperry director of software and information technology said “these advancements are part of the Sperry Geographical Information System (SGIS) that will accurately tie locations and historical information to benefit each North American railroad, in line with their specific information technology strategy”.

Underpinning all of the above technological advancement is the ongoing development of a highly skilled workforce to operate these systems that are mission-critical to the railroads. Sperry points out its stringent classroom training for rail-flaw detection chief operators and 2011 marked the 100th graduation from the class curriculum by a Sperry employee.

“With all the technological advancements coming from fifty engineers working at Sperry, the focused training on standard operating procedures allows us to ensure we not only meet our customers’ needs in technology, but equally as important, in service,” stated O’Rourke.

Thursday, 12 January 2012 13:08

A hurricane happening: Irene recovery

When the starting point is disaster, the triumph of recovery is made all the more sweet for two Vermont shortlines.

When Hurricane and then Tropical Storm Irene rode along the East Coast of the United States in late August 2011, reactions to the damage ranged from shocking in the southeast to bullet dodging in New York City. By the time the storm blasted into Vermont on Aug. 28-29, 2011, winds had died down, but the amount of rain that fell unleashed some of the worst flooding the state had experienced in decades. For Vermont Rail System and New England Central Railroad, the storm left the shortlines with track sections hanging in mid air, compromised bridges and shut down both railroads for close to three weeks.

While it’s not unusual for hurricanes and tropical storms to affect the New England Central, according to Charles Hunter assistant vice president of government affairs for RailAmerica, which owns and operates the NECR, the south end of the system located in Connecticut and Massachusetts has been the focus of storms over the past 10 years. In order to prepare for Irene’s impact, Hunter says NECR halted both freight and Amtrak passenger operations prior to Irene’s arrival.

Over on Vermont Rail System, employees were on standby the day of Irene’s arrival. Charlie Lemieux, VRS superintendent of maintenance-of-way, described the preparation as a bit of a waiting game to see what the storm would do. VRS ran patrols in front of trains until waters became overwhelming, operations stopped and employees were pulled off the line for safety.

“As far as any other prep work, there wasn’t much to do until the storm left and we saw what we were dealing with,” said Lemieux.

Both railroads were left to deal with extensive damage. Between the two railroads, there were close to 150 washouts, six compromised bridges and nearly 35 miles of track that had been destroyed.

“NECR had washed out road bed with the rails and ties suspended in mid air, we had bank slides as deep as 50 feet below where the track use to be, mud slides and trees came down over the right-of-way and, while we did not lose any bridges, we had some bridges where the head walls and the piers were affected,” said Hunter.

Lemieux said the Green Mountain Railroad (GMRC), part of VRS, received the worst damage between Rutland, Vt., and Bellows Falls, Vt., where a few bridges were off their abutments and more bridges were lost between Rutland and Hoosick Junction, N.Y.

“We had approximately six miles of track that was totally undermined and washed out and we had at least 15 miles of track that was underwater that we could not access until the water subsided,” said Lemieux.
Once the water receded, Lemieux said only seven miles of track out of the 15 were a total loss and the rest of the damage consisted of superficial washes.

For NECR, the damage was especially painful to discover as the shortline was in the middle of a large improvement project for Amtrak’s Vermonter line. The high-speed rail improvements had just been completed about a month before Irene’s arrival and included installation of continuously welded rail, new crossties, highway-rail grade crossing safety improvements and other track improvements.

“The low point was assessing all the damage, that was pretty depressing,” said Rick Boucher, assistant general manager for NECR, “Especially after a large project where everything had looked so good and then basically, overnight was destroyed.”

“We had brand new cwr hanging in mid air,” said Hunter, “The good news is that because we had installed the rail and installed new ties or re-spiked the ties we were keeping, most of the elements stayed intact even though they were hanging in mid air.”

Bridge #114, milepost 11 on the GMRC. Photo courtesy of VRS.

Organizing the repair

Post storm, both railroads were shutdown to thru traffic. VRS required an assessment by helicopter after the storm and determined priority to be opening the Green Mountain Gateway between Rutland and Bellows Falls. NECR divided the repair effort into four zones, a plan developed by RailAmerica’s director of structures Bill Riehl and director of engineering Ron Marshall after they completed an on-site assessment of the damage. The worst, zone 3, located in the Roxbury and Braintree Vt., area also dubbed the Red Zone. Work began in zones 1 and 4 and progressed toward the Red Zone.

“We worked toward the Red Zone because we knew access to it would be difficult,” said Boucher. “The plan was to attack [the damage] from each end with the anticipation that by the time we got to the Red Zone, some of the roads would be opened up enough that we could begin to truck some material in and we could bring material in by rail as well, if we had zones 1, 2 and 4 done.”

Access problems due to many roads in Vermont having been washed out by the storm were an issue for both NECR and VRS.

“With anything of this magnitude, there will always be little quirks that will happen along the line that we try to overcome,” said Lemieux. “The biggest one was trying to get the aggregate material to the different locations. A lot of locations were not road accessible and the roads were washed out. It was difficult to get the material to the job sites where it needed to be.”

“We had to actually construct roads to reach our right-of-way to conduct repairs,” said Hunter. “We worked with the local farmers and land owners to get their permission to build roads into those areas and everyone was great to work with. Vermont Agency of Transportation issued a 30-day suspension of environmental permitting for railroad repairs and road repairs, so we were able to get in to do the necessary repairs without the permitting process.”

Once access issues were resolved, the real repair work began and on VRS, bridge repair was a focus.
“On the GMRC there was no traffic because we had a bridge in Proctorsville, Vt., that was off it’s abutment and one in Arlington, Vt., and there were no trains running until we got all bridges safe to run over,” said Lemieux. “One particular contractor that was outstanding was Engineers Construction, Inc., they did a wonderful job for us. We had them concentrating on bridges. Some of the abutments were gone and one bridge, 114, was at a tilt of about 30 some odd degrees.”

Lemieux said that in order to repair the bridge, which was recently completed, the contractors drove pilings down and made a new bridge seat. Heavy-duty cranes were brought in to move the bridge onto temporary pilings so traffic could travel over it before final repairs could be made and the structure was placed on new bridge seats.

NECR had to deal with a lot of holes left by washouts. Dealing with larger holes threatened the shortline’s aggressive recovery schedule.

Mangled track structure near Northfield, Vt. Photo by Rick Boucher, NECR.

“At one point, we thought we were falling behind, but once we got through a few critical areas, we made up time,” said Boucher. “We had one area with three large holes, basically a whole curve was just gone with one section of track left in the middle, but the track itself was over a bank and there was just subgrade left. Three large holes had nothing, no subgrade everything was gone. We had to start from the bottom. Some of those holes were 25-30 feet deep and they ranged from five to 800 feet long.”

Boucher also notes the NECR’s bridge contractors, Osmose Railroad Service, Inc., and Engineers Construction, Inc., were responsible for keeping to the repair schedule.

“Initially, we thought it would be Sept. 23 before the bridge work would be completed. Those contractors did a heck of a job to beat their own initial estimates also,” said Boucher.

The shortlines were not alone in their recovery effort. Aid came from the region’s other shortlines, contractors and the American Short Line and Regional Railroad Association. ASLRRA put out an All Points Bulletin for dump cars and both the NECR and VRS said they received a good response from neighboring railroads.

“Railroads are an interesting industry in that not only do we compete with each other but we also cooperate with each other for certain freight movements,” said Hunter. “Generally speaking, the railroads in New England are very response-oriented. When somebody has a problem, the other railroads will help you out.”

Open for business

It took three weeks for both shortlines to transition between storm-ravaged to back in business. VRS dumped 60,000 tons of rip rap and on the NECR, 15,000 tons of ballast was dumped, 12,500 feet of damaged right-of-way was repaired and all but a small section of new cwr was able to be placed back into service.

Lemieux and the rest of the VRS team were happy with the accomplishment of a quick and thorough recovery effort. 

“We had many meetings on it and we came up with a date that we wanted to hit, it could have been a long shot, but that’s what we wanted, we are very proud that we were able to do that,” said Lemieux. “We dealt with a lot of little issues, but the main motivator was that our customers were not receiving their commodities. We were very much customer-oriented to get us up and going because once we’re going, we can help Vermont get up on its feet.”

The engineering department at NECR originally aimed for the railroad to be back in service on Sept. 23. The first train was run on the entire line on Sept. 20, three days ahead of the goal.

“It was a collective effort by everyone, good planning, a lot of support and cooperation from the contractors,” said Boucher. “As we got into that Red Zone, things started going faster than anticipated. We thought we were really going to struggle with accessibility and the repairs actually went a lot quicker than we thought.”
For their efforts to recover from Irene, both railroads were awarded the Herb Ogden Award for Rail Advocacy from the Vermont Rail Action Network.

NECR's Charlie Hunter took this photo near Randolph, Vt., on Sept. 8, 2011. Less than two weeks later, on Sept. 20, the NECR ran its first thru train.

The last piece of the puzzle is to figure out how to cover the multi-million dollar price tag associated with Irene’s damage. Because Vermont owns the line VRS operates on, the repair effort is eligible for FEMA funds. However, NECR, as a privately owned entity is not eligible, leaving only the Federal Railroad Administration’s Disaster Relief Fund for financial aid.

“There is no money in that fund,” said Hunter. “We’re trying to get that funded, which would not only help our railroad but other railroads in the northeast that sustained damage.”

Waiting around for monetary relief is not something either railroad is doing, as they are both still involved in Vermont’s continued recovery. The state’s highways did not recover as fast as the rail lines. Both shortlines are involved in the running of aggregate to help repair the state’s road network. 

Start Prev 121 122 123 124 125 126 127 128 129 Next End
Page 128 of 129